Triggering Shock Wave Positions by Patterned Energy Deposition

Author:

Andrews Philip1ORCID,Lax Philip1ORCID,Leonov Sergey1ORCID

Affiliation:

1. Department of Aerospace and Mechanical Engineering, Institute for Flow Physics and Control, University of Notre Dame, South Bend, IN 46637, USA

Abstract

The problem considered in this work is shock wave (SW) positioning control in shock-dominated flows. Experiments are conducted to investigate the triggering effect of patterned near-surface electrical discharges on SW reflection from plane walls. In the wind tunnel, M=4, P0 = 4 bar, a solid wedge SW generator is mounted on the upper wall. Q-DC filamentary electrical discharges were arranged on the opposite wall, so that the SW from the wedge impinged on the plasma filaments that are arranged flow-wise in either a row of three or a single central filament. Within the supersonic flow, narrow subsonic areas are actuated by electrical discharge thermal deposition, resulting in pressure redistribution, which, in turn, relocates the reflection of impinging SW to a predefined position. Mie scattering, schlieren imaging, and wall pressure measurements are used to explore the details of plasma-SW interaction. Using Mie scattering, the three-dimensional shape of the SW structure is mapped both before and after electrical discharge activation. Plasma-based triggering mechanisms are described in terms of the physical principles of flow control and a criterion for determining the effectiveness of the flowfield control.

Funder

US Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3