Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation

Author:

Fernandes ItaloORCID,Pimenta Felipe M.ORCID,Saavedra Osvaldo R.ORCID,Assireu Arcilan T.ORCID

Abstract

Wind energy is a powerful resource contributing to the decarbonization of the electric grid. However, wind power penetration introduces uncertainty about the availability of wind energy. This article addresses the complementarity of remote offshore wind sites in Brazil, demonstrating that strategic distribution of wind farms can significantly reduce the seasonality and the risk of periods without generation and reduce dependence on fossil sources. Field observations, atmospheric reanalysis, and simplified optimization methods are combined to demonstrate generation improvement considering regions under environmental licensing and areas not yet considered for offshore development. Aggregated power results demonstrate that with the relocation of wind turbines, a 68% reduction of the grid seasonal variability is possible, with a penalty of only 9% of the generated energy. This is accomplished through optimization and the inclusion of the northern region, which presents negative correlations with all other stations. More specifically, the north and northeast of Brazil have large seasonal amplitudes. However, out-of-phase wind regimes with a strong negative correlation (R < −0.6) and high-capacity factors (CF) during the peak seasons occur in Jan-Feb-Mar in the north (CF > 0.5) and in Aug-Sep-Oct in the northeast (CF > 0.7). These complementary regimes allow for the introduction of the concept of Reserve Wind Power (RWP) plants, wind farms that can be viewed as “reserve sources” for energy security. These can replace the contracts of thermal reserve plants, with resulting economic and environmental advantages. Our analysis suggests that RWP plants can be 20 to 32% cheaper than thermal reserves in the current market.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3