CFD-DEM Simulation of Particle Fluidization Behavior and Glycerol Gasification in a Supercritical Water Fluidized Bed

Author:

Luo Jia,Chen Jingwei,Yi Lei

Abstract

In this study, a mathematical model of hydrogen production from glycerol gasification in supercritical water was established based on the CFD-DEM method. The fluidization process of a supercritical water fluidized bed and the effects of bed height and feed structure on particle distribution and residence time of feedstock were analyzed. Additionally, the temperature field in the fluidized bed, the reaction rate distribution of each reaction and the influence of wall temperature on gas yields were also studied. The simulation results show that the bubble channel is easy to form along the wall at one side of the feed inlet. When the initial bed height is high, and the double symmetric feed inlet structure is used, the residence time of the feedstock is prolonged. The pyrolysis of glycerol mainly occurs in the middle and lower part of the fluidized bed reactor, and the reaction rate of the water gas shift reaction and methanation reaction are highest near the outlet, and a high wall temperature is conducive to the glycerol gasification.

Funder

Jiangxi University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3