Abstract
Due to the rapidly increasing power demand worldwide, the development of power systems occupies a significant position in modern society. Furthermore, a high proportion of renewable energy resources (RESs) is an inevitable trend in further power system planning, due to traditional energy shortages and environmental pollution problems. However, as RESs are variable, intermittent, and uncontrollable, more challenges will be introduced in transmission expansion planning (TEP). Therefore, in order to guarantee the security and reliability of the power system, research related to TEP with the integration of RESs is of great significance. In this paper, to solve the TEP problem considering load and wind power uncertainties, an AC TEP model solved by a mixed integer non-linear programming (MINLP) is proposed, the high-quality optimal solutions of which demonstrate the accuracy and efficiency of the method. Latin hypercube sampling (LHS) is employed for the scenario generation, while a simultaneous backward reduction algorithm is applied for the scenario reduction, thus reducing the computational burden. Through this method, the reserved scenarios can effectively reflect the overall trends of the original distributions. Based on a novel worst-case scenario analysis method, the obtained optimal solutions are shown to be more robust and effective.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献