Abstract
The carboniferous carbonate reservoirs in the North Truva Oilfield have undergone complex sedimentation, diagenesis and tectonic transformation. Various reservoir spaces of pores, caves and fractures, with strong reservoir heterogeneity and diverse pore structures, have been developed. As a result, a quantitative description of the pore structure is difficult, and the accuracy of logging identification and prediction is low. These pose a lot of challenges to reservoir classification and evaluation as well as efficient development of the reservoirs. This study is based on the analysis of core, thin section, scanning electron microscope, high-pressure mercury injection and other data. Six types of petrophysical facies, PG1, PG2, PG3, PG4, PG5, and PG6, were divided according to the displacement pressure, mercury removal efficiency, and median pore-throat radius isobaric mercury parameters, combined with the shape of the capillary pressure curve. The petrophysical facies of the wells with mercury injection data were divided accordingly, and then the machine learning method was applied. The petrophysical facies division results of two mercury injection wells were used as training samples. The artificial neural network (ANN) method was applied to establish a training model of petrophysical facies recognition. Subsequently, the prediction for the petrophysical facies of each well in the oilfield was carried out, and the petrophysical facies division results of other mercury injection wells were applied to verify the prediction. The results show that the overall coincidence rate for identifying petrophysical facies is as high as 89.3%, which can be used for high-precision identification and prediction of petrophysical facies in non-coring wells.
Funder
Foundation of Petrochina oil and gas major project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference35 articles.
1. Major factors controlling the development of marine carbonate reservoirs
2. Complex porosity and permeability relationship and influencing factors of carbonate reservoir: A case study of plateau facies in Precaspian Basin;He;Pet. Explor. Dev.,2015
3. 3D geological modeling of dual porosity carbonate reservoirs: A case from the Kenkiyak pre-salt oilfield, Kazakhstan
4. Reservoir characteristics of carbonate oil and gas fields in the world and main control factors of hydrocarbon accumulation in them;Fan;Earth Sci. Front.,2005
5. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献