Abstract
The evaporation, autoignition and micro-explosion characteristics of RP-3 kerosene droplets under sub-atmospheric pressure (0.2–1.0 bar) and elevated temperature (473–1023 K) were experimentally investigated using high-speed camera technology. The results showed that the droplet evaporation rate increased monotonically with increasing temperature and pressure under 573–873 K and 0.2–1.0 bar. The decrease of temperature and pressure was obviously detrimental to the successful autoignition of droplets and increased the ignition delay time. Autoignitions at 0.2 bar were very difficult and required an ambient temperature of at least 973 K, which was about 150 K higher than the minimum ignition temperature at 1.0 bar. Sub-atmospheric pressure environment significantly inhibits the formation of soot particle clusters during the autoignition of droplet. Reducing pressure was also discovered to reduce the likelihood of micro-explosions at 673, 773 and 823 K but increase the bubble growth rate and droplet breakage intensity. Strong micro-explosions with droplet breakage time close to 1 ms were observed at 0.6 bar and 773/823 K, showing the characteristic of bubble inertia control growth.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献