Stable Carbon Isotopic Composition of Selected Alkylnaphthalenes and Alkylphenanthrenes from the Tarim Oilfields, NW China

Author:

Konan N’Guessan Francois De Sales,Li Meijun,Shi Shengbao,Kojo Amoako,Toyin AbdulkareemORCID,Boakye Nancy Pearl Osei,Li Tiantian

Abstract

The present study aimed firstly to use a set of crude oil samples and a dataset to provide new evidence for source input contribution in selected aromatic isomers for discrimination of oils from three oilfields from Tarim Basin and identify the key factor (s) controlling the isotope composition. Thus, the present research showed that the δ13C values of alkylnaphthalenes and alkylphenanthrenes plotted against P/DBT and Ga/C30H ratios is a reliable and convenient tool for discrimination of organic matter variations in different oilfields. More importantly, molecular ratios and different diagram plots revealed that the selected oil samples would be derived from a mixing of indigenous organic matter from the terrestrial (in Kuqa area) and marine (in the cratonic area) depositional environments prior the apparition of the Yakela Faulted Uplift. Thus, Daolaoba, Yakela, and Tahe oils were made up of organic materials from both marine and terrestrial sources. Furthermore, marine organic matter input dominates oils from the Tahe and Yakela, with a minor input from terrestrial sources. The oils from Daolaoba were assigned to be from a mixing of marine and terrestrial material inputs. The controlling factors assessment revealed that biodegradation has an insignificant effect on the set of oils; however, the source input and the thermal maturity together control the isotopic compositions of individual aromatic isomers from these three oilfields.

Funder

National Natural Science Foundation of China

National Key R & D Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3