A Study on the Impact of Various Meteorological Data on the Design Performance of Rooftop Solar Power Projects in Vietnam: A Case Study of Electric Power University

Author:

Pham Manh-Hai,Phap Vu Minh,Trung Nguyen Ngoc,Son Tran Thanh,Kien Duong Trung,Anh Tho Vu Thi

Abstract

People are increasingly using clean energy sources, contributing to environmental protection according to the general trend of the world. In the form of renewable energy, solar energy has contributed to solving current pressing problems, such as environmental pollution and air pollution, improving people’s quality of life. The design of solar power projects in Vietnam is mainly based on meteorological data sources from Meteonorm and NASA. However, the accuracy assessment of two data sources compared to the actual solar power data in Vietnam is not available, so there is no basis to determine better meteorological data source quality to serve the design of rooftop solar power projects. The content of this paper analyzes the simulation results of a typical rooftop solar power station at the Electric Power University, Hanoi city based on meteorological data sources from Meteonorm and NASA. After that, the simulation results will be compared with the actual operating data of a rooftop solar power station near the Electric Power University and other real PV systems in the world. The study results showed that the amount of electricity production using the Meteonorm meteorological data was closer to the actual data than the NASA data source. Therefore, solar power projects in Vietnam should use Meteonorm data source for the design process to determine the best economic and technical efficiency for investors.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3