Abstract
We present a new method to evaluate the hydraulic jump characteristics in a horizontal rectangular channel with a positive step. We considered the flow curvature effect and the free surface’s small rise at the A-type hydraulic jump’s end. First, we present a novel method to give jump length estimation based on the similarity of the jump and the turbulent wall-jet, considering the pressure gradient. Then, considering the jump as a curvilinear flow and using a one-dimensional momentum equation, we present an accurate expression for the conjugate flow depth regarding the initial Froude number and step height. Finally, we compute the jump’s energy dissipation rate. Compared to the theoretical models for conjugate flow depth in a hydraulic jump, the proposed equation in this study fit the experimental data better, even for high steps and large initial Froude numbers. However, for low Froude numbers (F1 < 5), the equation was less accurate in estimating the jump length. Regarding the jump’s energy dissipation rate, the results agreed well with the experimental data from previous investigations. However, it is noted that the increased energy dissipation rate dwindled in larger Froude numbers.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献