Optimal Implementation of Wastewater Reuse in Existing Sewerage Systems to Improve Resilience and Sustainability in Water Supply Systems

Author:

Dev Aakash,Dilly Timo C.,Bakhshipour Amin E.ORCID,Dittmer UlrichORCID,Bhallamudi S. Murty

Abstract

A transition from conventional centralized to hybrid decentralized systems has been increasingly advised recently due to their capability to enhance the resilience and sustainability of urban water supply systems. Reusing treated wastewater for non-potable purposes is a promising opportunity toward the aforementioned resolutions. In this study, we present two optimization models for integrating reusing systems into existing sewerage systems to bridge the supply–demand gap in an existing water supply system. In Model-1, the supply–demand gap is bridged by introducing on-site graywater treatment and reuse, and in Model-2, the gap is bridged by decentralized wastewater treatment and reuse. The applicability of the proposed models is evaluated using two test cases: one a proof-of-concept hypothetical network and the other a near realistic network based on the sewerage network in Chennai, India. The results show that the proposed models outperform the existing approaches by achieving more than a 20% reduction in the cost of procuring water and more than a 36% reduction in the demand for freshwater through the implementation of local on-site graywater reuse for both test cases. These numbers are about 12% and 34% respectively for the implementation of decentralized wastewater treatment and reuse.

Funder

Indo-German Science and Technology Centre

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference41 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3