Affiliation:
1. Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by infiltration of the blood and bone marrow, exhibiting a low remission rate and high recurrence rate. Current research has demonstrated that class I HDAC inhibitors can downregulate anti-apoptotic proteins, leading to apoptosis of AML cells. In the present investigation, we conducted structural modifications of marine cytotoxin Santacruzamate A (SCA), a compound known for its inhibitory activity towards HDACs, resulting in the development of a novel series of potent class I HDACs hydrazide inhibitors. Representative hydrazide-based compound 25c exhibited concentration-dependent induction of apoptosis in AML cells as a single agent. Moreover, 25c exhibited a synergistic anti-AML effect when combined with Venetoclax, a clinical Bcl-2 inhibitor employed in AML therapy. This combination resulted in a more pronounced downregulation of anti-apoptotic proteins Mcl-1 and Bcl-xL, along with a significant upregulation of the pro-apoptotic protein cleaved-caspase3 and the DNA double-strand break biomarker γ-H2AX compared to monotherapy. These results highlighted the potential of 25c as a promising lead compound for AML treatment, particularly when used in combination with Venetoclax.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Taishan Scholars Program
Fundamental Research Funds for the Central Universities-Ocean University of China
Science Foundation for Excellent Young Scholars of Shandong Province
Science and Technology Support Plan for Youth Innovation in Universities of Shandong Province