Novel Water Retention and Nutrient Management Technologies and Strategies Supporting Agricultural Water Management in Continental, Pannonian and Boreal Regions

Author:

Scholz MiklasORCID

Abstract

Urgent water and food security challenges, particularly in continental and boreal regions, need to be addressed by initiatives such as the Horizon 2020-funded project WATer retention and nutrient recycling in soils and streams for improved AGRIcultural production (WATERAGRI). A new methodological framework for the sustainable management of various solutions resilient to climate change has been developed. The results indicate that the effect of the climate scenario is significantly different for peatlands and constructed wetlands. The findings also highlight that remote-sensing-based yield prediction models developed from vegetation indices have the potential to provide quantitative and timely information on crops for large regions or even at the local farm scale. Verification of remotely sensed data is one of the prerequisites for the proper utilization and understanding of data. Research shows that current serious game applications fall short due to challenges such as not clarifying the decision problem, the lack of use of decision quality indicators and limited use of gaming. Overall, WATERAGRI solutions improve water and food security by adapting agriculture to climate change, recycling nutrients and providing educational tools to the farming community. Farmers in small agricultural catchments benefit directly from WATERAGRI, but over the long-term, the general public does as well.

Funder

European Union Horizon 2020

VINNOVA

Water JPI

Naturvårdsverket

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference58 articles.

1. WATer Retention and Nutrient Recycling in Soils and Streams for Improved AGRIicultural Production (WATERAGRI)https://wateragri.eu

2. The Sustainable Development Goals Report,2021

3. The Integrated Constructed Wetlands (ICW) concept

4. Mineral and biological contamination of soil and Capsicum annuum irrigated with recycled domestic wastewater

5. The universal design, operation and maintenance guidelines for farm constructed wetlands (FCW) in temperate climates

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3