Author:
Hsieh Cheng-Hsiung,Chen Ze-Yu,Chang Yi-Hung
Abstract
Single image dehazing has been a challenge in the field of image restoration and computer vision. Many model-based and non-model-based dehazing methods have been reported. This study focuses on a model-based algorithm. A popular model-based method is dark channel prior (DCP) which has attracted a lot of attention because of its simplicity and effectiveness. In DCP-based methods, the model parameters should be appropriately estimated for better performance. Previously, we found that appropriate scaling factors of model parameters helped dehazing performance and proposed an improved DCP (IDCP) method that uses heuristic scaling factors for the model parameters (atmospheric light and initial transmittance). With the IDCP, this paper presents an approach to find optimal scaling factors using the whale optimization algorithm (WOA) and haze level information. The WOA uses ground truth images as a reference in a fitness function to search the optimal scaling factors in the IDCP. The IDCP with the WOA was termed IDCP/WOA. It was observed that the performance of IDCP/WOA was significantly affected by hazy ground truth images. Thus, according to the haze level information, a hazy image discriminator was developed to exclude hazy ground truth images from the dataset used in the IDCP/WOA. To avoid using ground truth images in the application stage, hazy image clustering was presented to group hazy images and their corresponding optimal scaling factors obtained by the IDCP/WOA. Then, the average scaling factors for each haze level were found. The resulting dehazing algorithm was called optimized IDCP (OIDCP). Three datasets commonly used in the image dehazing field, the RESIDE, O-HAZE, and KeDeMa datasets, were used to justify the proposed OIDCP. Then a comparison was made between the OIDCP and five recent haze removal methods. On the RESIDE dataset, the OIDCP achieved a PSNR of 26.23 dB, which was better than IDCP by 0.81 dB, DCP by 8.03 dB, RRO by 5.28, AOD by 5.6 dB, and GCAN by 1.27 dB. On the O-HAZE dataset, the OIDCP had a PSNR of 19.53 dB, which was better than IDCP by 0.06 dB, DCP by 4.39 dB, RRO by 0.97 dB, AOD by 1.41 dB, and GCAN by 0.34 dB. On the KeDeMa dataset, the OIDCP obtained the best overall performance and gave dehazed images with stable visual quality. This suggests that the results of this study may benefit model-based dehazing algorithms.
Funder
Ministry of Science and Technology of the Republic of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献