Integration of Supercritical CO2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison

Author:

Seyed Mahmoudi Seyed Mohammad,Ghiami Sardroud RaminORCID,Sadeghi Mohsen,Rosen Marc A.ORCID

Abstract

The use of the organic Rankine cycle (ORC), organic flash cycle (OFC) and Kalina cycle (KC) is proposed to enhance the electricity generated by a supercritical CO2 recompression Brayton (SCRB) cycle. Novel comparisons of the SCRB/ORC, SCRB/OFC and SCRB/KC integrated plants from thermodynamic, exergoeconomic and sustainability perspectives are performed to choose the most appropriate bottoming cycle for waste heat recovery for the SCRB cycle. For comprehensiveness, the performance of the SCRB/OFC and SCRB/ORC layouts are examined using ten working fluids. The influence of design parameters such as pressure ratio in the supercritical CO2 (S-CO2) cycle, pinch point temperature difference in heater and pre-cooler 1, turbine inlet temperature and pressure ratio for the ORC/OFC/Kalina cycles are examined for the main system indicators including the net output power, energy and exergy efficiencies, and unit cost of power production. The order of the exergy efficiencies for the proposed systems from highest to lowest is: SCRB/ORC, SCRB/OFC and SCRB/KC. The minimum unit cost of power production for the SCRB/ORC system is lower than that for the SCRB/KC and SCRB/OFC systems, by 1.97% and 0.75%, respectively. Additionally, the highest exergy efficiencies for the SCRB/OFC and SCRB/ORC systems are achieved when n-nonane and R134a are employed as working fluids for the OFC and ORC, respectively. According to thermodynamic optimization design, the SCRB/ORC, SCRB/OFC and SCRB/KC systems exhibit sustainability indexes of 3.55, 3.47 and 3.39, respectively.

Funder

University of Tabriz

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3