XGBoost for Imbalanced Multiclass Classification-Based Industrial Internet of Things Intrusion Detection Systems

Author:

Le Thi-Thu-HuongORCID,Oktian Yustus EkoORCID,Kim HowonORCID

Abstract

The Industrial Internet of Things (IIoT) has advanced digital technology and the fastest interconnection, which creates opportunities to substantially grow industrial businesses today. Although IIoT provides promising opportunities for growth, the massive sensor IoT data collected are easily attacked by cyber criminals. Hence, IIoT requires different high security levels to protect the network. An Intrusion Detection System (IDS) is one of the crucial security solutions, which aims to detect the network’s abnormal behavior and monitor safe network traffic to avoid attacks. In particular, the effectiveness of the Machine Learning (ML)-based IDS approach to building a secure IDS application is attracting the security research community in both the general cyber network and the specific IIoT network. However, most available IIoT datasets contain multiclass output data with imbalanced distributions. This is the main reason for the reduction in the detection accuracy of attacks of the ML-based IDS model. This research proposes an IDS for IIoT imbalanced datasets by applying the eXtremely Gradient Boosting (XGBoost) model to overcome this issue. Two modern IIoT imbalanced datasets were used to assess our proposed method’s effectiveness and robustness, X-IIoTDS and TON_IoT. The XGBoost model achieved excellent attack detection with F1 scores of 99.9% and 99.87% on the two datasets. This result demonstrated that the proposed approach improved the detection attack performance in imbalanced multiclass IIoT datasets and was superior to existing IDS frameworks.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference42 articles.

1. DRaNN: A deep random neural network model for intrusion detection in industrial IoT;Latif;Proceedings of the 2020 International Conference on UK-China Emerging Technologies (UCET),2020

2. Real-Time validation scheme using blockchain technology for Industrial IoT;CNwakanma;Proceedings of the 2019 Korean Institute of Communications and Information Sciences Summer Conference,2019

3. The industrial internet of things (IIoT): An analysis framework

4. IoT-KEEPER: Detecting Malicious IoT Network Activity Using Online Traffic Analysis at the Edge

5. Identification of malicious activities in Industrial Internet of Things based on deep learning models;Muna;J. Inf. Secur. Appl.,2018

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3