Sustainable Modification of Polyethersulfone Membrane with Poly(Maleic Anhydride-Co-Glycerol) as Novel Copolymer

Author:

Al Hachim Zainab Safaa,Ridha Ali Mousa,AL-Baiati Mohammad N.,Alsalhy Qusay F.,Majdi Hasan Shakir

Abstract

This work presented an endeavour to fabricate sustainable and eco-friendly polyethersulfone (PES) ultrafiltration membranes. A novel and graft copolymer (Poly(Maleic Anhydride-Co-Glycerol)) (PMG) have been synthesized via a facile and rapid route to impart their hydrophilic features onto the final PES membrane. A series of characterization tools, for both nanoadditives and nanocomposite membranes, have been harnessed to confirm their successful fabrication processes. These include Fourier Transform Infrared Spectroscopy (FT-IR), scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), and contact angle measurements (CA). Results disclosed the successful synthesis of PMG nanoparticles that manifested a smooth homogenous surface with an average molecular size of 88.07 nm. The nanocomposite membrane structure has witnessed a gradual development upon each increment in the nanoparticle content ratio along with relatively thicker pore walls. The size and shape of figure-like micropores exhibited critical visible structural changes following the nanoadditive incorporation into the PES polymeric matrix. For the nanocomposite membrane, the SEM imaging indicated that a thicker active layer and less finger-like micropores were formed at higher PMG NP content within the membrane matrix. Hydrophilicity measurements disclosed a reversible correlation with the NP content where the CA angle value was at a minimum at the higher PMG loading content. Compared to the pristine membrane, a considerable enhancement in the performance of the modified membranes was witnessed. The membrane prepared using 2.5 g PMGNPs showcased six times higher pure water flux than neat PES membrane and maintained the highest retention (98%) against BSA protein solution. Additionally, the nanocomposite revealed promising antifouling and self-cleaning characteristics.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3