Water Footprint Assessment of Rainfed Crops with Critical Irrigation under Different Climate Change Scenarios in SAT Regions

Author:

Reddy Konda,Maruthi Vegapareddy,Pankaj Prabhat,Kumar ManoranjanORCID,Pushpanjali ,Prabhakar Mathyam,Reddy Artha,Reddy Kotha,Singh Vinod,Koradia Ashishkumar

Abstract

Semi-Arid Tropical (SAT) regions are influenced by climate change impacts affecting the rainfed crops in their productivity and production. Water Footprint (WF) assessment for rainfed crops on watershed scale is critical for water resource planning, development, efficient crop planning, and, better water use efficiency. A semi-arid tropical watershed was selected in lower Krishna river basin having a 4700 ha area in Telangana, India. Soil and Water Assessment Tool (SWAT) was used to estimate the water balance components of watershed like runoff, potential evapotranspiration, percolation, and effective rainfall for base period (1994 to 2013) and different climate change scenarios of Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 for the time periods of 2020, 2050 and 2080. Green and blue WF of rainfed crops viz., maize, sorghum, groundnut, redgram and cotton were performed by considering rainfed, and two critical irrigations (CI) of 30mm and 50mm. It indicated that the effective rainfall (ER) is less than crop evapo-transpiration (ET) during crop growing period under different RCPs, time periods, and base period. The green WF under rainfed condition over different RCPs and time periods had decreasing trend for all crops. The study suggested that in the rainfed agro-ecosystems, the blue WF can significantly reduce the total WF by enhancing the productivity through critical irrigation management using on farm water resources developed through rainwater harvesting structures. The maximum significant reduction in WF over the base period was observed 13–16% under rainfed, 30–32% with 30 mm CI and 40–42% with 50 mm CI by 2080. Development of crop varieties particularly in oilseeds and pulses which have less WF and higher yields for unit of water consumed could be a solution for improving overall WF in the watersheds of SAT regions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference41 articles.

1. The World Economical Forum 2021https://www.weforum.org/

2. Four billion people facing severe water scarcity

3. Agricultural Statistics at a Glance 2020https://eands.dacnet.nic.in/PDF/Agricultural%20Statistics%20at%20a%20Glance%20-%202020%20(English%20version).pdf

4. Managing water in rainfed agriculture—The need for a paradigm shift

5. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3