Synthesis and Integration of Hybrid Metal Nanoparticles Covered with a Molecularly Imprinted Polymer Nanolayer by Photopolymerization

Author:

Khitous Amine12,Molinaro Céline12ORCID,Thomas Constance12,Haupt Karsten3ORCID,Soppera Olivier12ORCID

Affiliation:

1. Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France

2. Université de Strasbourg, F-67081 Strasbourg, France

3. Université de Technologie de Compiègne, CNRS Laboratory for Enzyme and Cell Engineering, F-60203 Compiègne, France

Abstract

Interfacing recognition materials with transducers has consistently presented a challenge in the development of sensitive and specific chemical sensors. In this context, a method based on near-field photopolymerization is proposed to functionalize gold nanoparticles, which are prepared by a very simple process. This method allows in situ preparation of a molecularly imprinted polymer for sensing by surface-enhanced Raman scattering (SERS). In a few seconds, a functional nanoscale layer is deposited by photopolymerization on the nanoparticles. In this study, the dye Rhodamine 6G was chosen as a model target molecule to demonstrate the principle of the method. The detection limit is 500 pM. Due to the nanometric thickness, the response is fast, and the substrates are robust, allowing regeneration and reuse with the same performance level. Finally, this method of manufacturing has been shown to be compatible with integration processes, allowing the future development of sensors integrated in microfluidic circuits and on optical fibers.

Funder

Institut Universitaire de France

ANR

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3