Model-Based Prediction of Perceived Light Flashing in Recirculated Inclined Wavy-Bottomed Photobioreactors

Author:

Olivieri Giuseppe,Moroni MonicaORCID,Janssen Marcel,Piersanti Luca,Mezza Daniela,Bravi MarcoORCID

Abstract

Microalgae biomass production rate in short light-path photobioreactors potentially can be improved by mixing-induced flashing light regimes. A cascade photobioreactor features a thin liquid layer flowing down a sloping, wavy-bottomed surface where liquid flow exhibits peculiar local recirculation hydrodynamics, potentially conducive to an ordered flashing light regime. This article presents a model-based analysis of the frequency distribution of perceived irradiance in said wavy-bottomed photobioreactor. The model combines a Lagrangian description of the motion of individual cells, in turn derived from the hydrodynamic parameters of the photobioreactor extracted from an experimentally validated Computational Fluid Dynamic model, with a simplified description of the irradiance field across the culture thickness, down to the spectral analysis of perceived irradiance. The main finding of the work is that the wavy bottomed photobioreactor provides a ‘robust’ spectral excitation to the circulating microalgae up to 3 Hz frequency, while in flat panels and bubble columns excitation decays evenly at a 24 db/octave rate. This analysis paves the way to improving the light flashing performance of the wavy-bottomed photobioreactor with respect to geometry (cavity size and installation inclination) and operation (flow rate).

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference49 articles.

1. Photobioreactors for Mass Production of Microalgae;Zittelli,2013

2. Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications

3. Experiments on photosynthesis by Chlorella in flashing light;Kok,1953

4. Photosynthetic Response and Acclimation of Microalgae to Light Fluctuations;Grobbelaar,2006

5. Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing in Photobioreactors

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3