Efficient Location Service for a Mobile Sink in Solar-Powered Wireless Sensor Networks

Author:

Kang Minjae,Yoon Ikjune,Noh Dong

Abstract

By utilizing mobile sinks in wireless sensor networks (WSNs), WSNs can be deployed in more challenging environments that cannot connect with the Internet, such as those that are isolated or dangerous, and can also achieve a balanced energy consumption among sensors which leads to prolonging the network lifetime. However, an additional overhead is required to check the current location of the sink in order for a node to transmit data to the mobile sink, and the size of the overhead is proportional to that of the network. Meanwhile, WSNs composed of solar-powered nodes have recently been actively studied for the perpetual operation of a network. This study addresses both of these research topics simultaneously, and proposes a method to support an efficient location service for a mobile sink utilizing the surplus energy of a solar-powered WSN. In this scheme, nodes that have a sufficient energy budget can constitute rings, and the nodes belonging to these rings (which are called ring nodes) maintain up-to-date location information on the mobile sink node and serve this information to the other sensor nodes. Because each ring node only uses surplus energy to serve location information, this does not affect the performance of a node’s general operations (e.g., sensing, processing, and data delivery). Moreover, because multiple rings can exist simultaneously in the proposed scheme, the overhead for acquiring the position information of the sink can be significantly reduced, and also hardly increases even if the network size becomes larger.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3