Effects of Vetiveria zizanioides on the Restoration and Succession of Coal Gangue Mountain Plant Communities in Different Years

Author:

Shuai Honggang,Tian Sihui,Jin BaochengORCID,Wang Zhaoyi,Wang Jigao,Zhang Yaoyao,Wang Yuefeng,Zhao Xuechun

Abstract

The restoration of vegetation on coal gangue mountains has always been an area of concern, and therefore, an important area of research. Liupanshui city in Guizhou province, China, has a large number of coal gangue mountains, and for this reason, was chosen for studying vegetation succession on these sites. Vetiveria zizanioides is known to accelerate the restoration of vegetation on coal gangue mountains and to shorten community succession timeframes. Because of this, we investigated different successional stages after the planting of V. zizanioides on coal gangue mountains in the Dahe coal mine comprehensive environmental governance project area in Liupanshui city. Through field community surveys and model prediction, the effects of planted V. zizanioides on the species composition, species diversity, and community succession of gangue mountains 3, 6, 8, 10, and 13 years after planting were explored. In total, 35 plant species belonging to 17 families and 32 genera were recorded across the five different coal gangue mountains. With more time after planting, the height, coverage, density, and biomass of V. zizanioides all decreased, but increased for Miscanthus floridulus. The Simpson diversity index, Shannon–Wiener diversity index, and Pielou evenness index all first increased before decreasing over time; maximum values were recorded for the coal gangue mountain 8 years after planting of V. zizanioides. According to different similarity and dissimilarity indices, the successional stages became more similar with increasing time after planting. According to biomass fitting and prediction curves, the succession process of coal gangue mountain plant communities could be divided into a V. zizanioides community stage, a M. floridulus community stage, and a woody plant stage, that starts to approach the natural community of evergreen broad-leaved forests, with durations of 0–5.62 years, 5.62–17.48 years, and over 17.48 years, respectively.

Funder

The Science and Technology Department of Guizhou Province

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3