Abstract
Several port authorities are involved in the R+D+i projects for developing port management decision-making tools. We recorded the movements of 46 ships in the Outer Port of Punta Langosteira (A Coruña, Spain) from 2015 until 2020. Using this data, we created neural networks and gradient boosting models that predict the six degrees of freedom of a moored vessel from ocean-meteorological data and ship characteristics. The best models achieve, for the surge, sway, heave, roll, pitch and yaw movements, a 0.99, 0.99, 0.95, 0.99, 0.98 and 0.98 R2 in training and have a 0.10 m, 0.11 m, 0.09 m, 0.9°, 0.11° and 0.15° RMSE in testing, all below 10% of the corresponding movement range. Using these models with forecast data for the weather conditions and sea state and the ship characteristics and berthing location, we can predict the ship movements several days in advance. These results are good enough to reliably compare the models’ predictions with the limiting motion criteria for safe working conditions of ship (un) loading operations, helping us decide the best location for operation and when to stop operations more precisely, thus minimizing the economic impact of cargo ships unable to operate.
Funder
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Ministerio de Ciencia, Innovación y Universidades
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference48 articles.
1. Puertos del Estado (Spanish Port System)http://www.puertos.es/en-us
2. Mooring of Ships to Piers and Wharves,2014
3. Criteria for the (Un) Loading of Container Vessels,2012
4. Criteria for Movements of Moored Ships in Harbours: A Practical Guide,1995
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献