Application of Artificial Neural Networks to Predict Beach Nourishment Volume Requirements

Author:

Bujak Damjan,Bogovac Tonko,Carević Dalibor,Ilic Suzana,Lončar GoranORCID

Abstract

The volume of material required for the construction of new and expansion of existing beach sites is an important parameter for coastal management. This information may play a crucial role when deciding which beach sites to develop. This work examines whether artificial neural networks (ANNs) can predict the spatial variability of nourishment requirements on the Croatian coast. We use survey data of the nourishment volume requirements and gravel diameter from 2016 to 2020, fetch length, beach area and orientation derived from national maps which vary from location to location due to a complex coastal configuration on the East Adriatic coast, and wind, tide, and rainfall data from nearby meteorological/oceanographic stations to train and test ANNs. The results reported here confirm that an ANN can adequately predict the spatial variability of observed nourishment volumes (R and MSE for the test set equal 0.87 and 2.24 × 104, respectively). The contributions of different parameters to the ANN’s predictive ability were examined. Apart from the most obvious parameters like the beach length and the beach areas, the fetch length proved to be the most important input contribution to ANN’s predictive ability, followed by the beach orientation. Fetch length and beach orientation are parameters governing the wind wave height and direction and hence are proxies for forcing.

Funder

Hrvatska Zaklada za Znanost

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3