Rainfall Investigation by Means of Marine In Situ Gamma-ray Spectrometry in Ligurian Sea, Mediterranean Sea, Italy

Author:

Patiris Dionisis L.ORCID,Pensieri SaraORCID,Tsabaris ChristosORCID,Bozzano RobertoORCID,Androulakaki Effrossyni G.,Anagnostou Marios N.ORCID,Alexakis Stylianos

Abstract

Marine in situ gamma-ray spectrometry was utilized for a rainfall study at the W1M3A observing system in Ligurian Sea, Mediterranean Sea, Italy. From 7 June to 10 October 2016, underwater total gamma-ray counting rate (TCR) and the activity concentration of radon daughters 214Pb, 214Bi and potassium 40K were continuously monitored along with ambient noise and meteorological parameters. TCR was proven as a good rainfall indicator as radon daughters’ fallout resulted in increased levels of marine radioactivity during and 2–3 h after the rainfall events. Cloud origin significantly affects TCR and radon progenies variations, as aerial mass trajectories, which extend upon terrestrial areas, result in higher increments. TCR and radon progenies concentrations revealed an increasing non-linear trend with rainfall height and intensity. 40K was proven to be an additional radio-tracer as its dilution was associated with rainfall height. 40K variations combined with 214Bi measurements can be used to investigate the mixing of rain- and seawater. In comparison with measurements in the atmosphere, the application of marine in situ gamma-ray spectrometry for precipitation investigation provided important advantages: allows quantitative measurement of the radionuclides; 40K can be used, along with radon daughters, as a radio-tracer; the mixing of rain- and seawater can be associated with meteorological parameters.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3