Using Cloud-Based Array Electromagnetics on the Path to Zero Carbon Footprint during the Energy Transition

Author:

Strack KurtORCID,Davydycheva Sofia,Passalacqua Herminio,Smirnov Maxim,Xu Xiayu

Abstract

Fluid imaging is one of the key geophysical technologies for the energy industry during energy transition to zero footprint. We propose better Cloud-based fluid distribution imaging to allow better, more optimized production, thus reducing carbon dioxide (CO2) footprint per barrel produced. For CO2 storage, the location knowledge of the stored fluids is mandatory. Electromagnetics is the preferred way to image reservoir fluids due to its strong coupling to the fluid resistivity. Unfortunately, acquiring and interpreting the data takes too long to contribute significantly to cost optimization of field operations. Using artificial intelligence and Cloud based data acquisition we can reduce the operational feedback to near real time and even, for the interpretation, to close to 24 h. This then opens new doors for the breakthrough of this technology from exploration to production and monitoring. It allows the application envelope to be enlarged to much noisier environments where real time acquisition can be optimized based on the acquired data. Once all components are commercialized, the full implementation could become a real game changer by providing near real time 3-dimensional subsurface images in support of the energy transition.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference43 articles.

1. How geophysics can help the geothermal industry;Gasperikova,2020

2. Using controlled-source electromagnetic (CSEM) for CO2 storage monitoring in the North Dakota CarbonSAFE project;Barajas-Olalde,2021

3. Future Directions of Electromagnetic Methods for Hydrocarbon Applications

4. Controlled-Source Electromagnetic Approaches for Hydrocarbon Exploration and Monitoring on Land

5. Subsalt imaging in northern Germany using multiphysics (magnetotellurics, gravity, and seismic)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3