Effect of Modified Clay on the Growth Dynamics and Physio—Biochemical Response of Newly Hatched Larvae of the Marine Medaka (Oryzias melastigma)

Author:

Zhang PeipeiORCID,Song Xiuxian,Zhang Yue,Shen Huihui,Dong Xueyi,Li Jing,Yu Zhiming

Abstract

An outbreak of harmful algal blooms (HABs) often leads to the death of fish and other marine organisms and causes serious losses to human economic activities. Modified clay (MC) technology is an effective way to control HABs. Although the material and preparation process are based on the premise of green and safety, the potential eco-environmental impacts of MC on non-target organisms should still have to receive attention before field applications can occur. Therefore, the effects of one commonly used modified clay, polyaluminum chloride-modified clay (PAC-MC), on the survival, growth, and oxidative stress of the marine medaka (Oryzias melastigma) were studied. The toxicity test results showed that the 96-h median lethal concentration (96-h LC50) of PAC-MC for newly hatched medaka larvae was 5.204 g/L, which was much higher than the concentration used on site (4–10 t/km2). Within the concentration range of PAC-MC used in this experiment (≤2 g/L), the morphology, heart rate, growth, and aluminum content of larvae did not change with the increase in the modified clay concentration. Low concentrations of PAC-MC (≤0.5 g/L) did not significantly affect catalase (CAT) activity, superoxide dismutase (SOD) activity, peroxidase (POD) activity, and the content of malondialdehyde (MDA), but higher concentrations of PAC-MC (such as 2 g/L) caused oxidative damage to the larvae and increased the antioxidant enzyme activity of the larvae. The present study revealed that under an effective dosage for treating harmful algal blooms on site, PAC-MC had no adverse effects on the survival, growth, oxidative stress, and aluminum content of the newly hatched marine medaka, which provides a scientific basis for the field application of modified clay.

Funder

National Natural Science Foundation of China

the Key R&D project of Shandong Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3