A Spectral Method for Two-Dimensional Ocean Acoustic Propagation

Author:

Ma XianORCID,Wang YongxianORCID,Zhu Xiaoqian,Liu WeiORCID,Lan Qiang,Xiao Wenbin

Abstract

The accurate calculation of the sound field is one of the most concerning issues in hydroacoustics. The one-dimensional spectral method has been used to correctly solve simplified underwater acoustic propagation models, but it is difficult to solve actual ocean acoustic fields using this model due to its application conditions and approximation error. Therefore, it is necessary to develop a direct solution method for the two-dimensional Helmholtz equation of ocean acoustic propagation without using simplified models. Here, two commonly used spectral methods, Chebyshev–Galerkin and Chebyshev–collocation, are used to correctly solve the two-dimensional Helmholtz model equation. Since Chebyshev–collocation does not require harsh boundary conditions for the equation, it is then used to solve ocean acoustic propagation. The numerical calculation results are compared with analytical solutions to verify the correctness of the method. Compared with the mature Kraken program, the Chebyshev–collocation method exhibits higher numerical calculation accuracy. Therefore, the Chebyshev–collocation method can be used to directly solve the representative two-dimensional ocean acoustic propagation equation. Because there are no model constraints, the Chebyshev–collocation method has a wide range of applications and provides results with high accuracy, which is of great significance in the calculation of realistic ocean sound fields.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference41 articles.

1. Progress of geoacoustic inversion in underwater acoustics;Erchang;J. Appl. Acoust.,2019

2. Optical Improved Quadrature Spatial Modulation for Cooperative Underwater Wireless Communication under Weak Oceanic Turbulence Conditions

3. Development of U.S. Underwater Unmanned Vehicles and Its Influence on U.S. Military Thinking;Liu;Fly. Missile,2020

4. Principle and Application of Typical Sound Field Model of Ocean Acoustics;Yang,2018

5. Research on Transmission of Acoustic Waves in Layered Media;Ya-fei;Piezoelectrics Acoustooptics,2000

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3