Abstract
The THz wireless transmission system based on photonics has been a promising candidate for further 6G communication, which can provide hundreds of Gbps or even Tbps data capacity. In this paper, 144-Gbps dual polarization quadrature-phase-shift-keying (DP-QPSK) signal generation and transmission over a 20-km SSMF and 3-m wireless 2 × 2 multiple-input multiple-output (MIMO) link at 500 GHz have been demonstrated. To further compensate for the linear and nonlinear distortions during the fiber–wireless transmission, a novel joint Deep Belief Network (J-DBN) equalizer is proposed. Our proposed J-DBN-based schemes are mainly optimized based upon the constant modulus algorithm (CMA) and direct-detection least mean square (DD-LMS) equalization. The results indicate that the J-DBN equalizer has better bit error rate (BER) performance in receiver sensitivity. In addition, the computational complexity of the J-DBN-based equalizer can be approximately 46% lower than that of conventional equalizers with similar performance. To our knowledge, this is the first time that a novel joint DBN equalizer has been proposed based on classical algorithms. It is a promising scheme to meet the demands of future fiber–wireless integration communication for low power consumption, low cost, and high capacity.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
the State Key Laboratory of Advanced Optical Communication Systems and Networks of Shang-hai Jiao Tong University
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献