Working Mechanisms and Experimental Research of Piezoelectric Pump with a Cardiac Valve-like Structure

Author:

Zhou Jiayue,Sun Wanting,Fu Jun,Liu Huixia,Wang HongmeiORCID,Yan QiufengORCID

Abstract

In this study, based on the working principle of the cardiac valve structure that prevents blood from flowing back, a piezoelectric pump with a cardiac valve-like structure (PPCVLS) is designed. The operating principles of cardiac-valve-like structures (CVLSs) are introduced. Furthermore, the closure conditions of the CVLSs on both sides of the flow channel are explored. The principle behind the working-state conversion between “valve-based” and “valve-less” of PPCVLS is also analyzed. A high-speed dynamic microscopic image-analysis system was utilized to observe and verify the working-state conversion between “valve-based” and “valve-less” PPCVLSs. The resonant frequency of the piezoelectric pump was measured by Doppler laser vibrometer, and the optimal working frequency of the piezoelectric vibrator was determined as 22.35 Hz. The prototype piezoelectric pump was fabricated by the 3D printing technique, and the output performance of the piezoelectric pump was also evaluated. The experimental results show that the piezoelectric pump is valve-based when the driving voltage is greater than 140V, and the piezoelectric pump is valve-less when the driving voltage is less than 140 V. Furthermore, the maximum output pressure of the piezoelectric pump was 199 mm H2O when driven by the applied voltage of 220 V at 7 Hz, while the maximum flow rate of the piezoelectric pump was 44.5 mL/min when driven by the applied voltage of 220 V at 11 Hz.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference30 articles.

1. Zhang, J.H., Fu, J., Zhang, F., Zhou, Y., Huang, J., Huang, W.Q., Bian, K., and Liu, P.C. (2018, January 25–27). Redefining valves in volume pump. Proceedings of the 16th International Conference on New Actuators, Bremen, Germany.

2. Evolution of water lifting devices (pumps) over the centuries worldwide;Water,2015

3. Research and development of LNG submerged pump;Cryogenics,2010

4. A study on structural analysis of globe valve for LNG carrier;J. Korean Soc. Mar. Eng.,2007

5. Piezoelectric titanium based microfluidic pump and valves for implantable medical application;Sens. Actuators A Phys.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3