Abstract
In order to further improve the degree of frequency response of the surface acoustic wave (SAW) sensor for gas detection, the structure of the forked-finger transducer was analyzed, and its optimal structural parameters were simulated and designed. The simulation model of the unidirectional fork-finger transducer is established by using COMSOL finite element software. The thickness of the piezoelectric substrate, the electrode structure and material, and the thickness of the coating film are optimized and simulated. The results show that: the optimal thickness of the piezoelectric substrate is 3λ. The optimal thickness ratio and the lay-up ratio of the forked-finger electrode are 0.02 and 0.5, respectively. The Al electrode is more suitable as the a forked-finger electrode material compared to Cu, Au and Pt materials. Under the same conditions, the metal oxide-sensitive film (ZnO and TiO2) has a higher frequency response than the polymer-sensitive film (polyisobutylene and polystyrene), and the best sensitive film thickness range is 0.5~1 μm.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Heilongjiang province
Basic scientific research business expenses and scientific research projects of provincial undergraduate colleges and universities in Heilongjiang Province
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献