Squeeze-Type Piezoelectric Inkjet Printhead Actuating Waveform Design Method Based on Numerical Simulation and Experiment

Author:

Liu Ning,Sheng Xianjun,Zhang Mingcong,Han Wei,Wang Kexin

Abstract

The piezoelectric inkjet printing technique has been commonly used to produce conductive graphics. In this paper, a trapezoidal waveform design method for squeeze-type piezoelectric inkjet printhead is presented to provide a modified steady ejection and optimal droplet shape, in which a coupled multi-physics model of a piezoelectric inkjet printhead is developed. This research describes the effects of parameters, including rising time tr, falling time tf, and dwelling time td, of the trapezoidal waveform on the pressure at the nozzle through numerical simulations. These parameters are initially optimized based on numerical simulations and further optimized based on experimental results. When the printhead is actuated by the optimized waveform with the tr = 5 µs, td = 10 µs, and tf = 2 µs, the droplets are in optimal shape, and their size is about half the diameter of the nozzle. The experimental results validate the efficacy of this waveform design method, which combines numerical simulation and experiment, as well as demonstrating that ink droplet formation can be studied from the point of pressure variation at the nozzle.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3