Preparation of Cemented Carbide Insert Cutting Edge by Flexible Fiber-Assisted Shear Thickening Polishing Method

Author:

Shao Lanying,Zhou Yu,Fang Wei,Wang Jiahuan,Wang XuORCID,Deng Qianfa,Lyu Binghai

Abstract

Reasonable cutting edge preparation can eliminate microscopic defects and improve the performance of a cutting tool. The flexible fiber-assisted shear thickening polishing method was used for the preparation of cemented carbide insert cutting edge. The influences of the polishing angle and polishing speed on the cutting edge preparation process were investigated, and the cutting edge radius and K-factor were employed as evaluation indexes to evaluate the edge shape. A prediction model of the cutting edge radius was also established using the mathematical regression method. The results show that the polishing angle has a more significant effect on the cutting edge radius. The cutting edge preparation efficiency is the highest under the polishing angle of 10°, and the cutting edge radius increased from the 15 ± 2 μm to 110 ± 5 μm in 5 min. The cutting edge shape can be controlled by adjusting the polishing angle, and the K-factor varies from 0.14 ± 0.03 to 0.56 ± 0.05 under the polishing angle (from −20° to 20°). The polishing speed has a less effect on the cutting edge radius and shape, but increasing the polishing speed within a certain range can improve the efficiency of cutting edge preparation. The flank face roughness decreased from the initial Ra 163.1 ± 10 nm to Ra 5.2 ± 2 nm at the polishing angle of −20°, which is the best polishing angle for the flank face surface roughness. The ANOVA method was employed to evaluate the effective weight of the polishing angle and polishing speed on preparation efficiency. The polishing angle (86.79%) has the more significant influence than polishing speed (13.21%) on the cutting edge preparation efficiency. The mathematical regression method was used to establish the model of the prediction of the cutting edge radius with polishing angle and speed, and the models were proved rationally. The results indicate that the FF-STP is an effective method for the high consistency preparation of cemented carbide insert cutting edge.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3