A Glass–Ultra-Thin PDMS Film–Glass Microfluidic Device for Digital PCR Application Based on Flexible Mold Peel-Off Process

Author:

Xia Yanming,Chu Xianglong,Zhao Caiming,Wang Nanxin,Yu Juan,Jin Yufeng,Sun Lijun,Ma Shenglin

Abstract

The microfluidic device (MFD) with a glass–PDMS–glass (G-P-G) structure is of interest for a wide range of applications. However, G-P-G MFD fabrication with an ultra-thin PDMS film (especially thickness less than 200 μm) is still a big challenge because the ultra-thin PDMS film is easily deformed, curled, and damaged during demolding and transferring. This study aimed to report a thickness-controllable and low-cost fabrication process of the G-P-G MFD with an ultra-thin PDMS film based on a flexible mold peel-off process. A patterned photoresist layer was deposited on a polyethylene terephthalate (PET) film to fabricate a flexible mold that could be demolded softly to achieve a rigid structure of the glass–PDMS film. The thickness of ultra-thin patterned PDMS could reach less than 50 μm without damage to the PDMS film. The MFD showcased the excellent property of water evaporation inhibition (water loss < 10%) during PCR thermal cycling because of the ultra-thin PDMS film. Its low-cost fabrication process and excellent water evaporation inhibition present extremely high prospects for digital PCR application.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference51 articles.

1. Digital PCR;Vogelstein;Proc. Natl. Acad. Sci. USA,1999

2. Digital polymerase chain reaction technology—Recent advances and future perspectives;Sreejith;Lab Chip,2018

3. Direct PCR: A review of use and limitations;Martin;Sci. Justice,2020

4. A review of current PCR-based methodologies for the authentication of meats from game animal species;Fajardo;Trends Food Sci. Technol.,2010

5. Digital microfluidics;Choi;Annu. Rev. Anal. Chem.,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3