Adjacent Vertex Distinguishing Coloring of Fuzzy Graphs

Author:

Gong Zengtai1,Zhang Chen12

Affiliation:

1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

2. School of Mathematics and Information Engineering, Longdong University, Qingyang 745000, China

Abstract

In this paper, we consider the adjacent vertex distinguishing proper edge coloring (for short, AVDPEC) and the adjacent vertex distinguishing total coloring (for short, AVDTC) of a fuzzy graph. Firstly, this paper describes the development process, the application areas, and the existing review research of fuzzy graphs and adjacent vertex distinguishing coloring of crisp graphs. Secondly, we briefly introduce the coloring theory of crisp graphs and the related theoretical basis of fuzzy graphs, and add some new classes of fuzzy graphs. Then, based on the α-cuts of fuzzy graphs and distance functions, we give two definitions of the AVDPEC of fuzzy graphs, respectively. A lower bound on the chromatic number of the AVDPEC of a fuzzy graph is obtained. With examples, we show that some results of the AVDPEC of a crisp graph do not carry over to our set up; the adjacent vertex distinguishing chromatic number of the fuzzy graph is different from the general chromatic number of a fuzzy graph. We also give a simple algorithm to construct a (d,f)-extended AVDPEC for fuzzy graphs. After that, in a similar way, two definitions of the AVDTC of fuzzy graphs are discussed. Finally, the future research directions of distinguishing coloring of fuzzy graphs are given.

Funder

Natural Science Foundation of China

Natural Science Foundation of Gansu Province in China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference45 articles.

1. Similarity relations and fuzzy ordering;Zadeh;Inf. Sci.,1971

2. Kaufmann, A. (1973). Introduction to the Theory of Fuzzy Subsets, Academic Press.

3. Rosenfeld, A. (1975). Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Academic Press.

4. Operations on fuzzy graphs;Mordenson;Inf. Sci.,1994

5. Complete fuzzy graphs;Alhawary;Int. J. Math. Comb.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3