Partial Inverse Sturm-Liouville Problems

Author:

Bondarenko Natalia P.123ORCID

Affiliation:

1. Department of Mechanics and Mathematics, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia

2. Department of Applied Mathematics and Physics, Samara National Research University, Moskovskoye Shosse 34, Samara 443086, Russia

3. S.M. Nikolskii Mathematical Institute, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia

Abstract

This paper presents a review of both classical and modern results pertaining to partial inverse spectral problems for differential operators. Such problems consist in the recovery of differential expression coefficients in some part of the domain (a finite interval or a geometric graph) from spectral characteristics, while the coefficients in the remaining part of the domain are known a priori. Usually, partial inverse problems require less spectral data than complete inverse problems. In this review, we pay considerable attention to partial inverse problems on graphs and to the unified approach based on the reduction of partial inverse problems to Sturm-Liouville problems with entire analytic functions in a boundary condition. We not only describe the results of selected studies but also compare them with each other and establish interconnections.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference85 articles.

1. Marchenko, V.A. (1986). Sturm-Liouville Operators and Their Applications, Birkhäuser.

2. Levitan, B.M. (1987). Inverse Sturm-Liouville Problems, VNU Science Press.

3. Pöschel, J., and Trubowitz, E. (1987). Inverse Spectral Theory, Academic Press.

4. Freiling, G., and Yurko, V. (2001). Inverse Sturm-Liouville Problems and Their Applications, Nova Science Publishers.

5. Kravchenko, V.V. (2020). Direct and Inverse Sturm-Liouville Problems, Birkhäuser.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3