Data-Driven Optimized Artificial Neural Network Technique for Prediction of Flyrock Induced by Boulder Blasting

Author:

Wang Xianan1,Hosseini Shahab2ORCID,Jahed Armaghani Danial3ORCID,Tonnizam Mohamad Edy3

Affiliation:

1. School of Civil and Architectural Engineering, Anyang Institute of Technology, Anyang 455000, China

2. Faculty of Engineering, Tarbiat Modares University, Tehran 14115-175, Iran

3. Centre of Tropical Geoengineering (GEOTROPIK), Institute of Smart Infrastructure and Innovative Engineering (ISIIC), Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia

Abstract

One of the most undesirable consequences induced by blasting in open-pit mines and civil activities is flyrock. Furthermore, the production of oversize boulders creates many problems for the continuation of the work and usually imposes additional costs on the project. In this way, the breakage of oversize boulders is associated with throwing small fragments particles at high speed, which can lead to serious risks to human resources and infrastructures. Hence, the accurate prediction of flyrock induced by boulder blasting is crucial to avoid possible consequences and its’ environmental side effects. This study attempts to develop an optimized artificial neural network (ANN) by particle swarm optimization (PSO) and jellyfish search algorithm (JSA) to construct the hybrid models for anticipating flyrock distance resulting in boulder blasting in a quarry mine. The PSO and JSA algorithms were used to determine the optimum values of neurons’ weight and biases connected to neurons. In this regard, a database involving 65 monitored boulders blasting for recording flyrock distance was collected that comprises six influential parameters on flyrock distance, i.e., hole depth, burden, hole angle, charge weight, stemming, and powder factor and one target parameter, i.e., flyrock distance. The ten various models of ANN, PSO–ANN, and JSA–ANN were established for estimating flyrock distance, and their results were investigated by applying three evaluation indices of coefficient of determination (R2), root mean square error (RMSE) and value accounted for (VAF). The results of the calculation of evaluation indicators revealed that R2, values of (0.957, 0.972 and 0.995) and (0.945, 0.954 and 0.989) were determined to train and test of proposed predictive models, respectively. The yielded results denoted that although ANN model is capable of anticipating flyrock distance, the hybrid PSO–ANN and JSA–ANN models can anticipate flyrock distance with more accuracy. Furthermore, the performance and accuracy level of the JSA–ANN predictive model can estimate better compared to ANN and PSO–ANN models. Therefore, the JSA–ANN model is identified as the superior predictive model in estimating flyrock distance induced from boulder blasting. In the final, a sensitivity analysis was conducted to determine the most influential parameters in flyrock distance, and the results showed that charge weight, powder factor, and hole angle have a high impact on flyrock changes.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3