Affiliation:
1. School of Economics and Management, Beijing Information Science & Technology University, Beijing 100085, China
2. School of Economics and Management, North China Electric Power University, Beijing 102206, China
Abstract
Carbon trading has been deemed as the most effective mechanism to mitigate carbon emissions. However, during carbon trading market operation, competition among market participants will inevitably occur; hence, the precise forecasting of the carbon trading price (CTP) has become a significant element in the formulation of competition strategies. This investigation has established a hybrid CTP forecasting framework combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), sample entropy (SE) method, improved salp swarm algorithm (ISSA), and multi-kernel extreme learning machine (MKELM) methods to improve forecasting accuracy. Firstly, the initial CTP data sequence is disintegrated into several intrinsic mode functions (IMFs) and a residual sequence by a CEEMDAN method. Secondly, to save calculation time, SE method has been utilized to reconstruct the IMFs and the residual sequence into new IMFs. Thirdly, the new IMFs are fed into the MKELM model, combing RBF and the poly kernel functions to utilize their superior learning and generalization abilities. The parameters of the MKELM model are optimized by ISSA, combining dynamic inertia weight and chaotic local searching method into the SSA to enhance the searching speed, convergence precision, as well as the global searching ability. CTP data in Guangdong, Shanghai, and Hubei are selected to prove the validity of the established CEEMDAN-SE-ISSA-MKELM model. Through a comparison analysis, the established CEEMDAN-SE-ISSA-MKELM model performs the best with the smallest MAPE and RMSE values and the highest R2 value, which are 0.76%, 0.53, and 0.99, respectively, for Guangdong,. Thus, the presented model would be extensively applied in CTP forecasting in the future.
Funder
Qin Xin Talents Cultivation Program, Beijing Information Science and Technology University
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献