Kuramoto Model with Delay: The Role of the Frequency Distribution

Author:

Klinshov Vladimir V.1234ORCID,Zlobin Alexander A.123

Affiliation:

1. A. V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul’yanov Street, 603950 Nizhny Novgorod, Russia

2. Faculty of Radiophysics of Nizhny Novgorod, Lobachevsky State University, 23 Prospekt Gagarina, 603022 Nizhny Novgorod, Russia

3. Saint Petersburg University, 7-9 Universitetskaya Embankment, 199034 St. Petersburg, Russia

4. National Research University Higher School of Economics, 25/12 Bol’shaya Pecherskaya Street, 603155 Nizhny Novgorod, Russia

Abstract

The Kuramoto model is a classical model used for the describing of synchronization in populations of oscillatory units. In the present paper we study the Kuramoto model with delay with a focus on the distribution of the oscillators’ frequencies. We consider a series of rational distributions which allow us to reduce the population dynamics to a set of several delay differential equations. We use the bifurcation analysis of these equations to study the transition from the asynchronous to synchronous state. We demonstrate that the form of the frequency distribution may play a substantial role in synchronization. In particular, for Lorentzian distribution the delay prevents synchronization, while for other distributions the delay can facilitate synchronization.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference55 articles.

1. Pikovsky, A., Kurths, J., Rosenblum, M., and Kurths, J. (2003). Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press.

2. Strogatz, S.H. (2012). Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life, Hachette.

3. Winfree, A.T. (2013). The Geometry of Biological Time, Springer Science & Business Media.

4. Kuramoto, Y. (1975, January 23–29). Self-entrainment of a population of coupled non-linear oscillators. Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, Kyoto, Japan.

5. Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence, Springer.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3