Abstract
The normalization of dimensionless groups that rule the system of nonlinear coupled ordinary differential equations defined by the Lotka–Volterra biological or chemical oscillator has been derived in this work by applying a normalized nondimensionalization protocol. The normalization procedure, which is quite accurate, does not require complex mathematical steps; however, a deep physical understanding of the problem is required to choose the appropriate references to define the dimensionless variables. From the dimensionless groups derived, the functional dependences of some unknowns of interest are established. Due to the coupled nature of the problem that induces temporal concentration rates of each species that are quite different at each point of the phase diagram, this diagram has been divided into four stretches corresponding to the four quadrants. For each stretch, the limit values (maximum or minimum) of the variables, as well as their duration, are expressed in terms of the dimensionless groups derived before. Finally, to check all the mentioned dependences, a numerical simulation has been carried out.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference23 articles.
1. Plasma Physics. Proceedings of the Summer School of Theorical Physics;Laval,1975
2. A Neural Network Modeled by an Adaptive Lotka-Volterra System
3. Mathematical Ecology;Pielou,1977
4. Mathematical Models of Chemical Reactions;Erdi,1989
5. Universal formats for nonlinear dynamical systems
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献