Uncertainty Quantification through Dropout in Time Series Prediction by Echo State Networks

Author:

Atencia MiguelORCID,Stoean RuxandraORCID,Joya Gonzalo

Abstract

The application of echo state networks to time series prediction has provided notable results, favored by their reduced computational cost, since the connection weights require no learning. However, there is a need for general methods that guide the choice of parameters (particularly the reservoir size and ridge regression coefficient), improve the prediction accuracy, and provide an assessment of the uncertainty of the estimates. In this paper we propose such a mechanism for uncertainty quantification based on Monte Carlo dropout, where the output of a subset of reservoir units is zeroed before the computation of the output. Dropout is only performed at the test stage, since the immediate goal is only the computation of a measure of the goodness of the prediction. Results show that the proposal is a promising method for uncertainty quantification, providing a value that is either strongly correlated with the prediction error or reflects the prediction of qualitative features of the time series. This mechanism could eventually be included into the learning algorithm in order to obtain performance enhancements and alleviate the burden of parameter choice.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3