A New ODE-Based Model for Tumor Cells and Immune System Competition

Author:

Alharbi Sana AbdulkreamORCID,Rambely Azmin ShamORCID

Abstract

Changes in diet are heavily associated with high mortality rates in several types of cancer. In this paper, a new mathematical model of tumor cells growth is established to dynamically demonstrate the effects of abnormal cell progression on the cells affected by the tumor in terms of the immune system’s functionality and normal cells’ dynamic growth. This model is called the normal-tumor-immune-unhealthy diet model (NTIUNHDM) and governed by a system of ordinary differential equations. In the NTIUNHDM, there are three main populations normal cells, tumor cell and immune cells. The model is discussed analytically and numerically by utilizing a fourth-order Runge–Kutta method. The dynamic behavior of the NTIUNHDM is discussed by analyzing the stability of the system at various equilibrium points and the Mathematica software is used to simulate the model. From analysis and simulation of the NTIUNHDM, it can be deduced that instability of the response stage, due to a weak immune system, is classified as one of the main reasons for the coexistence of abnormal cells and normal cells. Additionally, it is obvious that the NTIUNHDM has only one stable case when abnormal cells begin progressing into early stages of tumor cells such that the immune cells are generated once. Thus, early boosting of the immune system might contribute to reducing the risk of cancer.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3