An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management

Author:

Allen James,Halberstadt Ari,Powers John,El-Farra Nael H.ORCID

Abstract

This work considers the problem of reducing the cost of electricity to a grid-connected commercial building that integrates on-site solar energy generation, while at the same time reducing the impact of the building loads on the grid. This is achieved through local management of the building’s energy generation-load balance in an effort to increase the feasibility of wide-scale deployment and integration of solar power generation into commercial buildings. To realize this goal, a simulated building model that accounts for on-site solar energy generation, battery storage, electrical vehicle (EV) charging, controllable lighting, and air conditioning is considered, and a supervisory model predictive control (MPC) system is developed to coordinate the building’s generation, loads and storage systems. The main aim of this optimization-based approach is to find a reasonable solution that minimizes the economic cost to the electricity user, while at the same time reducing the impact of the building loads on the grid. To assess this goal, three objective functions are selected, including the peak building load, the net building energy use, and a weighted sum of both the peak load and net energy use. Based on these objective functions, three MPC systems are implemented on the simulated building under scenarios with varying degrees of weather forecasting accuracy. The peak demand, energy cost, and electricity cost are compared for various forecast scenarios for each MPC system formulation, and evaluated in relation to a rules-based control scheme. The MPC systems tested the rules-based scheme based on simulations of a month-long electricity consumption. The performance differences between the individual MPC system formulations are discussed in the context of weather forecasting accuracy, operational costs, and how these impact the potential of on-site solar generation and potential wide-spread solar penetration.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3