Abstract
Evolution algebras are non-associative algebras that describe non-Mendelian hereditary processes and have connections with many other areas. In this paper, we obtain necessary and sufficient conditions for a given algebra A to be an evolution algebra. We prove that the problem is equivalent to the so-called SDC problem, that is, the simultaneous diagonalisation via congruence of a given set of matrices. More precisely we show that an n-dimensional algebra A is an evolution algebra if and only if a certain set of n symmetric n×n matrices {M1,…,Mn} describing the product of A are SDC. We apply this characterisation to show that while certain classical genetic algebras (representing Mendelian and auto-tetraploid inheritance) are not themselves evolution algebras, arbitrarily small perturbations of these are evolution algebras. This is intringuing, as evolution algebras model asexual reproduction, unlike the classical ones.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献