Abstract
In this paper a new method called the least squares differential quadrature method (LSDQM) is introduced as a straightforward and efficient method to compute analytical approximate polynomial solutions for nonlinear partial differential equations with fractional time derivatives. LSDQM is a combination of the differential quadrature method and the least squares method and in this paper it is employed to find approximate solutions for a very general class of nonlinear partial differential equations, wherein the fractional derivatives are described in the Caputo sense. The paper contains a clear, step-by-step presentation of the method and a convergence theorem. In order to emphasize the accuracy of LSDQM we included two test problems previously solved by means of other, well-known methods, and observed that our solutions present not only a smaller error but also a much simpler expression. We also included a problem with no known exact solution and the solutions computed by LSDQM are in good agreement with previous ones.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献