Towards a Better Basis Search through a Surrogate Model-Based Epistasis Minimization for Pseudo-Boolean Optimization

Author:

Kim Yong-Hoon,Yoon Yourim,Kim Yong-HyukORCID

Abstract

Epistasis, which indicates the difficulty of a problem, can be used to evaluate the basis of the space in which the problem lies. However, calculating epistasis may be challenging as it requires all solutions to be searched. In this study, a method for constructing a surrogate model, based on deep neural networks, that estimates epistasis is proposed for basis evaluation. The proposed method is applied to the Variant-OneMax problem and the NK-landscape problem. The method is able to make successful estimations on a similar level to basis evaluation based on actual epistasis, while significantly reducing the computation time. In addition, when compared to the epistasis-based basis evaluation, the proposed method is found to be more efficient.

Funder

Korea Coast Guard

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3