Numerical Estimation of Switched Reluctance Motor Excitation Parameters Based on a Simplified Structure Average Torque Control Strategy for Electric Vehicles

Author:

Hamouda MahmoudORCID,Abdel Menaem AmirORCID,Rezk HegazyORCID,Ibrahim Mohamed N.ORCID,Számel László

Abstract

Switched reluctance motors (SRMs) have been receiving great attention in electric vehicle (EV) applications. However, the complicated control and inherent torque ripples are the major drawbacks of SRMs. This paper introduces a numerical estimation method for the optimum control parameters of SRM based on a simplified average torque control (ATC) strategy for EVs. The proposed control aims to simplify the control algorithm to cut down complexity and cost. Besides, it aims to achieve all the vehicle requirements. A multi-objective optimization problem is set to determine the most efficient excitation parameters that can fulfill the vehicle requirements. The objective function has two terms: torque ripple and efficiency. Proper constraints for both turn-on and turn-off angles are included in order to achieve high-performance control, maximum torque per Ampere (MTPA) production, and reliable operation. Besides, additional toque constraints are involved to ensure fast dynamics, high-performance torque tracking capability, and parameter insensitivity. The motor model is accurately achieved based on the experimentally measured torque and flux characteristics. Several simulations are executed to prove the feasibility and effectiveness of the proposed control. Moreover, experimental results are obtained to validate the theoretical findings. It is observed that the proposed control has a significant reduction of torque ripples compared to the conventional control methods. The average reduction ratio of torque ripple over the speed range is about 72.43%. Besides, the proposed control succeeds in maintaining a very good efficiency and high torque/current ratio. It also has a fast-dynamic performance.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3