Fracture Characteristics and Analysis in Dissimilar Cu-Al Alloy Joints Formed via Electromagnetic Pulse Welding

Author:

Wang PuquanORCID,Chen DaolunORCID,Ran Yang,Yan Yunqi,Peng He,Jiang Xianquan

Abstract

The aim of this study was to identify and analyze the fatigue fracture characteristics of dissimilar Al 6061 to Cu (UNS C11000) lap joints made with ultrafast electromagnetic pulse welding (EMPW) via fractography, stress analysis and finite element simulation. It was observed that EMPW generated an annular (or ring-shaped) bonding area, with weld zones and a central non-weld zone when viewed from the cross section. Two types of failure modes occurred in relation to the cyclic loading levels: base metal fracture or transverse through-thickness (TTT) crack growth at a higher loading level, and joint interfacial failure at a lower loading level. In the interfacial failure, fatigue crack initiated from the outer edge of annular welding area, and propagated to form an approximate elliptical boundary. Fatigue crack propagation was characterized by fatigue striations existing in discrete areas on the fracture surface. This was attributed to a coupled role of shear and normal stresses present in a tensile lap shear sample due to the bending moment caused by the inherent misalignment. The final rapid fracture started from elliptical boundary with elongated shear dimples. Both theoretical stress analysis and finite element model revealed the maximum stress and stress concentration along the outer edge, where fatigue crack initiation occurred.

Funder

National Natural Science Foundation of China

Natural Sciences and Engineering Research Council of Canada

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3