Effective Synthesis of Carbon Hybrid Materials Containing Oligothiophene Dyes

Author:

Kamedulski PiotrORCID,Gauden Piotr A.ORCID,Lukaszewicz Jerzy P.,Ilnicka AnnaORCID

Abstract

This paper shows the first study of the synthesis of hybrid materials consisting of commercial Norit carbons and oligothiophenes. The study presents the influence of surface oxidation on dye deposition as well as changes of pore structure and surface chemistry. The hybrid materials were characterised using Raman spectroscopy, and scanning and transmission electron microscopy (SEM and HR-TEM, respectively). Confocal microscopy was employed to confirm the immobilization of oligomers on the surface of the carbons being investigated. Confocal microscopy measurements were additionally used to indicate whether dye molecules covered the entire surface of the selected commercial Norit samples. Specific surface area and pore structure parameters were determined by low-temperature nitrogen adsorption. Additionally, elemental content and surface chemistry were characterised by means of X-ray photoelectron spectroscopy (XPS) and combustion elemental analysis. Experimental results confirmed that oligothiophene dyes were adsorbed onto the internal part of the investigated pores of the carbon materials. The pores were assumed to have a slit-like shape, a set of 82 local adsorption isotherms was modelled for pores from 0.465 nm to 224 nm. Further, XPS data showed promising qualitative results regarding the surface characteristics and chemical composition of the hybrid materials obtained (sulphur content ranged from 1.40 to 1.45 at%). It was shown that the surface chemistry of activated carbon plays a key role in the dye deposition process. High surface heterogeneity after hydrothermal oxidation did not improve dye adsorption due to specific interactions between surface oxygen moieties and local electric charges in the oligothiophene molecules.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3