Characteristics of Ultrasonically Enhanced Low-Temperature Thermal Regeneration of Powdered Activated Carbon: A Case Study of Acetone and Aniline

Author:

Zheng Dan,Zhou Zhiwei,Yu Rui,Wang Menghu

Abstract

Effective regeneration of powdered activated carbon (PAC) is the key to reduce the operating cost of the PAC in wastewater treatment processes. In this study, volatile acetone and semi-volatile aniline were selected to investigate the regeneration characteristics of ultrasonically enhanced low-temperature thermal process. The results showed that the regeneration efficiency of the PAC that had adsorbed aniline or acetone increased with the increase in ultrasonic power, and optimal value of frequency and regeneration times were determined. The concentration and properties of organic solvents had a significant influence on the ultrasonic regeneration process. With the increase in heating temperature and regeneration time, the regeneration efficiency increased, but the loss of mass of the saturated PAC increased noticeably. With the combination of ultrasonic treatment in a solvent with low temperature heating, the PAC regeneration efficiency was successfully improved, and the PAC mass loss rate was noticeably reduced. The microjet, shock wave, and cavitation effects produced by ultrasonic treatment restored the specific surface area of the PAC, expanded its mesopore volume, and increased the pore diameter. A reasonable selection of the regeneration solution and optimization of the ultrasonic treatment conditions could create favorable conditions for subsequent low temperature thermal regeneration.

Funder

Natural Science Foundation of Hubei Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3