Abstract
Deep venous thrombosis (DVT) is a disease that must be diagnosed quickly, as it can trigger the death of patients. Nowadays, one can find different ways to determine it, including clinical scoring, D-dimer, ultrasonography, etc. Recently, scientists have focused efforts on using machine learning (ML) and neural networks for disease diagnosis, progressively increasing the accuracy and efficacy. Patients with suspected DVT have no apparent symptoms. Using pattern recognition techniques, aiding good timely diagnosis, as well as well-trained ML models help to make good decisions and validation. The aim of this paper is to propose several ML models for a more efficient and reliable DVT diagnosis through its implementation on an edge device for the development of instruments that are smart, portable, reliable, and cost-effective. The dataset was obtained from a state-of-the-art article. It is divided into 85% for training and cross-validation and 15% for testing. The input data in this study are the Wells criteria, the patient’s age, and the patient’s gender. The output data correspond to the patient’s diagnosis. This study includes the evaluation of several classifiers such as Decision Trees (DT), Extra Trees (ET), K-Nearest Neighbor (KNN), Multi-Layer Perceptron Neural Network (MLP-NN), Random Forest (RF), and Support Vector Machine (SVM). Finally, the implementation of these ML models on a high-performance embedded system is proposed to develop an intelligent system for early DVT diagnosis. It is reliable, portable, open source, and low cost. The performance of different ML algorithms was evaluated, where KNN achieved the highest accuracy of 90.4% and specificity of 80.66% implemented on personal computer (PC) and Raspberry Pi 4 (RPi4). The accuracy of all trained models on PC and Raspberry Pi 4 is greater than 85%, while the area under the curve (AUC) values are between 0.81 and 0.86. In conclusion, as compared to traditional methods, the best ML classifiers are effective at predicting DVT in an early and efficient manner.
Funder
Autonomous University of Baja California
Subject
Applied Mathematics,Computational Mathematics,General Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献